Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 48
Filter
1.
Euro Surveill ; 29(15)2024 Apr.
Article in English | MEDLINE | ID: mdl-38606570

ABSTRACT

Since the end of November 2023, the European Mortality Monitoring Network (EuroMOMO) has observed excess mortality in Europe. During weeks 48 2023-6 2024, preliminary results show a substantially increased rate of 95.3 (95% CI:  91.7-98.9) excess all-cause deaths per 100,000 person-years for all ages. This excess mortality is seen in adults aged 45 years and older, and coincides with widespread presence of COVID-19, influenza and respiratory syncytial virus (RSV) observed in many European countries during the 2023/24 winter season.


Subject(s)
COVID-19 , Influenza, Human , Respiratory Syncytial Virus Infections , Respiratory Syncytial Virus, Human , Adult , Humans , Influenza, Human/epidemiology , Europe/epidemiology , Seasons , Respiratory Syncytial Virus Infections/epidemiology
2.
Euro Surveill ; 29(10)2024 Mar.
Article in English | MEDLINE | ID: mdl-38456219

ABSTRACT

Gonorrhoea cases increased steeply in women aged 20 to 24 years across 15 EU/EEA countries in July to December 2022 and January to June 2023 with, respectively, 73% and 89% more cases reported than expected, based on historical data from 2015 to 2019. Smaller increases among men due to heterosexual transmission were observed in nine EU/EEA countries. Interventions to raise awareness among young people about sexually transmitted infection risks are needed, emphasising the benefit of safe sexual practices and testing.


Subject(s)
Gonorrhea , Sexually Transmitted Diseases , Male , Humans , Female , Adolescent , Gonorrhea/epidemiology , Sexually Transmitted Diseases/epidemiology , Sexual Behavior , Heterosexuality
3.
Cancers (Basel) ; 16(4)2024 Feb 06.
Article in English | MEDLINE | ID: mdl-38398077

ABSTRACT

Pancreatic ductal adenocarcinoma (PDAC) is mostly diagnosed at advanced or even metastasized stages, limiting the prognoses of patients. Metastasis requires high tumor cell plasticity, implying phenotypic switching in response to changing environments. Here, epithelial-mesenchymal transition (EMT), being associated with an increase in cancer stem cell (CSC) properties, and its reversion are important. Since it is poorly understood whether different CSC phenotypes exist along the EMT axis and how these impact malignancy-associated properties, we aimed to characterize CSC populations of epithelial and mesenchymal-like PDAC cells. Single-cell cloning revealed CSC (Holoclone) and non-CSC (Paraclone) clones from the PDAC cell lines Panc1 and Panc89. The Panc1 Holoclone cells showed a mesenchymal-like phenotype, dominated by a high expression of the stemness marker Nestin, while the Panc89 Holoclone cells exhibited a SOX2-dominated epithelial phenotype. The Panc89 Holoclone cells showed enhanced cell growth and a self-renewal capacity but slow cluster-like invasion. Contrarily, the Panc1 Holoclone cells showed slower cell growth and self-renewal ability but were highly invasive. Moreover, cell variants differentially responded to chemotherapy. In vivo, the Panc1 and Panc89 cell variants significantly differed regarding the number and size of metastases, as well as organ manifestation, leading to different survival outcomes. Overall, these data support the existence of different CSC phenotypes along the EMT axis in PDAC, manifesting different metastatic propensities.

4.
Nucleic Acids Res ; 52(1): 370-384, 2024 Jan 11.
Article in English | MEDLINE | ID: mdl-37994783

ABSTRACT

The phospholipase D (PLD) family is comprised of enzymes bearing phospholipase activity towards lipids or endo- and exonuclease activity towards nucleic acids. PLD3 is synthesized as a type II transmembrane protein and proteolytically cleaved in lysosomes, yielding a soluble active form. The deficiency of PLD3 leads to the slowed degradation of nucleic acids in lysosomes and chronic activation of nucleic acid-specific intracellular toll-like receptors. While the mechanism of PLD phospholipase activity has been extensively characterized, not much is known about how PLDs bind and hydrolyze nucleic acids. Here, we determined the high-resolution crystal structure of the luminal N-glycosylated domain of human PLD3 in its apo- and single-stranded DNA-bound forms. PLD3 has a typical phospholipase fold and forms homodimers with two independent catalytic centers via a newly identified dimerization interface. The structure of PLD3 in complex with an ssDNA-derived thymidine product in the catalytic center provides insights into the substrate binding mode of nucleic acids in the PLD family. Our structural data suggest a mechanism for substrate binding and nuclease activity in the PLD family and provide the structural basis to design immunomodulatory drugs targeting PLD3.


Subject(s)
Exodeoxyribonucleases , Phospholipase D , Humans , Lysosomes/metabolism , Phospholipase D/chemistry , Phospholipases , Exodeoxyribonucleases/chemistry
5.
Front Plant Sci ; 14: 1261180, 2023.
Article in English | MEDLINE | ID: mdl-37810374

ABSTRACT

The use of protoplasts in plant biology has become a convenient tool for the application of transient gene expression. This model system has allowed the study of plant responses to biotic and abiotic stresses, protein location and trafficking, cell wall dynamics, and single-cell transcriptomics, among others. Although well-established protocols for isolating protoplasts from different plant tissues are available, they have never been used for studying plant cells using cryo electron microscopy (cryo-EM) and cryo electron tomography (cryo-ET). Here we describe a workflow to prepare root protoplasts from Arabidopsis thaliana plants for cryo-ET. The process includes protoplast isolation and vitrification on EM grids, and cryo-focused ion beam milling (cryo-FIB), with the aim of tilt series acquisition. The whole workflow, from growing the plants to the acquisition of the tilt series, may take a few months. Our protocol provides a novel application to use plant protoplasts as a tool for cryo-ET.

6.
Nature ; 618(7963): 188-192, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37165187

ABSTRACT

The endoplasmic reticulum and mitochondria are main hubs of eukaryotic membrane biogenesis that rely on lipid exchange via membrane contact sites1-3, but the underpinning mechanisms remain poorly understood. In yeast, tethering and lipid transfer between the two organelles is mediated by the endoplasmic reticulum-mitochondria encounter structure (ERMES), a four-subunit complex of unresolved stoichiometry and architecture4-6. Here we determined the molecular organization of ERMES within Saccharomyces cerevisiae cells using integrative structural biology by combining quantitative live imaging, cryo-correlative microscopy, subtomogram averaging and molecular modelling. We found that ERMES assembles into approximately 25 discrete bridge-like complexes distributed irregularly across a contact site. Each bridge consists of three synaptotagmin-like mitochondrial lipid binding protein domains oriented in a zig-zag arrangement. Our molecular model of ERMES reveals a pathway for lipids. These findings resolve the in situ supramolecular architecture of a major inter-organelle lipid transfer machinery and provide a basis for the mechanistic understanding of lipid fluxes in eukaryotic cells.


Subject(s)
Endoplasmic Reticulum , Mitochondria , Saccharomyces cerevisiae , Endoplasmic Reticulum/chemistry , Endoplasmic Reticulum/metabolism , Lipids , Mitochondria/chemistry , Mitochondria/metabolism , Mitochondrial Membranes/metabolism , Saccharomyces cerevisiae/chemistry , Saccharomyces cerevisiae/cytology , Saccharomyces cerevisiae/metabolism , Saccharomyces cerevisiae Proteins/chemistry , Saccharomyces cerevisiae Proteins/metabolism , Models, Molecular , Synaptotagmins/chemistry , Synaptotagmins/metabolism
7.
PLoS One ; 18(5): e0283196, 2023.
Article in English | MEDLINE | ID: mdl-37130136

ABSTRACT

We study costly communication in a common-pool resource (CPR) experiment as a proxy for two different forms of participatory processes: as a public good and as a club good. A public communication meeting, representing centralized participatory processes, occurs when all group members' monetary contributions reach a specified threshold. Club communication meetings, representing networked participatory processes, follow only among those members of the group who pay a communication fee. We test whether the way costly communication is provided affects the willingness of participants to contribute to communication, as well as the dynamics of such payments, and the content of communication. This is done by analyzing contributions to communication and communication content of 100 real-life resource users participating in a lab-in-field experiment. We find that contributions towards communication are higher when communication is public, and that club communication features more frequent but less inclusive communication meetings. Also, communication content is more oriented towards addressing the collective action problem associated with the management of the resource when communication groups are attended by all participants. The identified differences between the two ways to provide for communication can inform policies and the design of participatory processes in natural resource governance.


Subject(s)
Communication , Natural Resources , Humans , Group Dynamics
8.
Cell Rep ; 42(2): 112107, 2023 02 28.
Article in English | MEDLINE | ID: mdl-36800289

ABSTRACT

Lipid droplets (LDs) are intracellular organelles responsible for storing surplus energy as neutral lipids. Their size and number vary enormously. In white adipocytes, LDs can reach 100 µm in diameter, occupying >90% of the cell. Cidec, which is strictly required for the formation of large LDs, is concentrated at interfaces between adjacent LDs and facilitates directional flux of neutral lipids from the smaller to the larger LD. The mechanism of lipid transfer is unclear, in part because the architecture of interfaces between LDs remains elusive. Here we visualize interfaces between LDs by electron cryo-tomography and analyze the kinetics of lipid transfer by quantitative live fluorescence microscopy. We show that transfer occurs through closely apposed monolayers, is slowed down by increasing the distance between the monolayers, and follows exponential kinetics. Our data corroborate the notion that Cidec facilitates pressure-driven transfer of neutral lipids through two "leaky" monolayers between LDs.


Subject(s)
Lipid Droplets , Proteins , Lipid Droplets/metabolism , Proteins/metabolism , Lipids , Lipid Metabolism
9.
Nat Commun ; 13(1): 7435, 2022 12 02.
Article in English | MEDLINE | ID: mdl-36460643

ABSTRACT

Ribosomes translate genetic information into primary structure. During translation, various cofactors transiently bind to the ribosome that undergoes prominent conformational and structural changes. Different translational states of ribosomes have been well characterized in vitro. However, to which extent the known translational states are representative of the native situation inside cells has thus far only been addressed in prokaryotes. Here, we apply cryo-electron tomography to cryo-FIB milled Dictyostelium discoideum cells combined with subtomogram averaging and classification. We obtain an in situ structure that is locally resolved up to 3 Angstrom, the distribution of eukaryotic ribosome translational states, and unique arrangement of rRNA expansion segments. Our work demonstrates the use of in situ structural biology techniques for identifying distinct ribosome states within the cellular environment.


Subject(s)
Dictyostelium , Eukaryota , Eukaryota/genetics , Dictyostelium/genetics , Eukaryotic Cells , Ribosomes , Prokaryotic Cells
10.
Elife ; 102021 10 26.
Article in English | MEDLINE | ID: mdl-34698018

ABSTRACT

During brain development, axons must extend over great distances in a relatively short amount of time. How the subcellular architecture of the growing axon sustains the requirements for such rapid build-up of cellular constituents has remained elusive. Human axons have been particularly poorly accessible to imaging at high resolution in a near-native context. Here, we present a method that combines cryo-correlative light microscopy and electron tomography with human cerebral organoid technology to visualize growing axon tracts. Our data reveal a wealth of structural details on the arrangement of macromolecules, cytoskeletal components, and organelles in elongating axon shafts. In particular, the intricate shape of the endoplasmic reticulum is consistent with its role in fulfilling the high demand for lipid biosynthesis to support growth. Furthermore, the scarcity of ribosomes within the growing shaft suggests limited translational competence during expansion of this compartment. These findings establish our approach as a powerful resource for investigating the ultrastructure of defined neuronal compartments.


Subject(s)
Axons/ultrastructure , Electron Microscope Tomography , Organoids/cytology , Brain/cytology , Brain/ultrastructure , Cryoelectron Microscopy , HeLa Cells , Humans , Macromolecular Substances/metabolism , Microscopy , Microscopy, Fluorescence , Organoids/ultrastructure
11.
Proc Natl Acad Sci U S A ; 118(31)2021 08 03.
Article in English | MEDLINE | ID: mdl-34321357

ABSTRACT

Many bacteria, including the major human pathogen Pseudomonas aeruginosa, are naturally found in multicellular, antibiotic-tolerant biofilm communities, in which cells are embedded in an extracellular matrix of polymeric molecules. Cell-cell interactions within P. aeruginosa biofilms are mediated by CdrA, a large, membrane-associated adhesin present in the extracellular matrix of biofilms, regulated by the cytoplasmic concentration of cyclic diguanylate. Here, using electron cryotomography of focused ion beam-milled specimens, we report the architecture of CdrA molecules in the extracellular matrix of P. aeruginosa biofilms at intact cell-cell junctions. Combining our in situ observations at cell-cell junctions with biochemistry, native mass spectrometry, and cellular imaging, we demonstrate that CdrA forms an extended structure that projects from the outer membrane to tether cells together via polysaccharide binding partners. We go on to show the functional importance of CdrA using custom single-domain antibody (nanobody) binders. Nanobodies targeting the tip of functional cell-surface CdrA molecules could be used to inhibit bacterial biofilm formation or disrupt preexisting biofilms in conjunction with bactericidal antibiotics. These results reveal a functional mechanism for cell-cell interactions within bacterial biofilms and highlight the promise of using inhibitors targeting biofilm cell-cell junctions to prevent or treat problematic, chronic bacterial infections.


Subject(s)
Adhesins, Bacterial/metabolism , Biofilms/growth & development , Pseudomonas aeruginosa/physiology , Adhesins, Bacterial/genetics , Bacterial Adhesion , Cell Membrane , Extracellular Matrix , Gene Expression Regulation, Bacterial , Single-Domain Antibodies
12.
Euro Surveill ; 26(22)2021 06.
Article in English | MEDLINE | ID: mdl-34085633

ABSTRACT

Luxembourg was among the first countries in the World Health Organization (WHO) European Region documenting interruption of endemic measles transmission, but an increased incidence was registered in spring 2019. The outbreak started with an unvaccinated student who had been to a winter sports resort in a neighbouring country, where a measles outbreak was ongoing. Subsequently, 12 secondary and two tertiary cases were confirmed among students from the same school, relatives and healthcare workers, as well as six probably unrelated cases. Only 11 cases initially fulfilled the WHO definition for suspected measles cases. Fourteen of 20 cases with information on country of birth and the majority of unvaccinated cases (10/12) were born outside of Luxembourg. Measles IgM antibody results were available for 16 of the confirmed cases, and five of the eight IgM negative cases had been vaccinated at least once. All 21 cases were PCR positive, but for three previously vaccinated cases with multiple specimen types, at least one of these samples was negative. The outbreak highlighted diagnostic challenges from clinical and laboratory perspectives in a measles elimination setting and showed that people born abroad and commuters may represent important pockets of susceptible people in Luxembourg.


Subject(s)
Measles , Disease Outbreaks , Humans , Luxembourg/epidemiology , Measles/diagnosis , Measles/epidemiology , Measles Vaccine , Measles virus , Schools
13.
Euro Surveill ; 26(2)2021 01.
Article in English | MEDLINE | ID: mdl-33446304

ABSTRACT

The European monitoring of excess mortality for public health action (EuroMOMO) network monitors weekly excess all-cause mortality in 27 European countries or subnational areas. During the first wave of the coronavirus disease (COVID-19) pandemic in Europe in spring 2020, several countries experienced extraordinarily high levels of excess mortality. Europe is currently seeing another upsurge in COVID-19 cases, and EuroMOMO is again witnessing a substantial excess all-cause mortality attributable to COVID-19.


Subject(s)
COVID-19/mortality , Mortality/trends , Adolescent , Adult , Aged , Aged, 80 and over , COVID-19/epidemiology , Cause of Death , Child , Child, Preschool , Computer Systems , Epidemiological Monitoring , Europe/epidemiology , Humans , Infant , Infant, Newborn , Middle Aged , SARS-CoV-2 , Young Adult
14.
J Anesth ; 35(3): 390-393, 2021 06.
Article in English | MEDLINE | ID: mdl-32691227

ABSTRACT

During the SARS-CoV-2 pandemic in 2020, departments of anesthesiology worldwide have encountered new and unique challenges. In this short communication, we present and assess our recommendations for orotracheal intubation, a frequent high-risk procedure. We will point out that interdisciplinary cooperation with "non-patient care" departments like the Institute for Medical Microbiology and Hygiene tremendously helped us in creating this and other new, clear standards for anesthesiological procedures. Moreover, to reliably implement our newly created measures, we distributed incisive posters and organized comprehensive training sessions. Eventually, we summarize and analyze the occurring problems of our suggestions for intubation during their realization.


Subject(s)
Anesthesiology , COVID-19 , Humans , Intubation, Intratracheal , Pandemics , SARS-CoV-2
15.
Euro Surveill ; 25(26)2020 07.
Article in English | MEDLINE | ID: mdl-32643601

ABSTRACT

A remarkable excess mortality has coincided with the COVID-19 pandemic in Europe. We present preliminary pooled estimates of all-cause mortality for 24 European countries/federal states participating in the European monitoring of excess mortality for public health action (EuroMOMO) network, for the period March-April 2020. Excess mortality particularly affected ≥ 65 year olds (91% of all excess deaths), but also 45-64 (8%) and 15-44 year olds (1%). No excess mortality was observed in 0-14 year olds.


Subject(s)
Cause of Death/trends , Coronavirus Infections/mortality , Coronavirus/isolation & purification , Influenza, Human/mortality , Pneumonia, Viral/mortality , Adolescent , Adult , Age Distribution , Aged , Aged, 80 and over , Betacoronavirus , COVID-19 , Child , Child, Preschool , Coronavirus Infections/diagnosis , Disease Outbreaks , Europe/epidemiology , Female , Humans , Infant , Infant, Newborn , Influenza, Human/diagnosis , Male , Middle Aged , Mortality/trends , Pandemics , Pneumonia, Viral/diagnosis , Population Surveillance , Preliminary Data , SARS-CoV-2 , Young Adult
16.
Nat Immunol ; 21(4): 434-441, 2020 04.
Article in English | MEDLINE | ID: mdl-32205883

ABSTRACT

Adaptive evolution is a key feature of T cell immunity. During acute immune responses, T cells harboring high-affinity T cell antigen receptors (TCRs) are preferentially expanded, but whether affinity maturation by clonal selection continues through the course of chronic infections remains unresolved. Here we investigated the evolution of the TCR repertoire and its affinity during the course of infection with cytomegalovirus, which elicits large T cell populations in humans and mice. Using single-cell and bulk TCR sequencing and structural affinity analyses of cytomegalovirus-specific T cells, and through the generation and in vivo monitoring of defined TCR repertoires, we found that the immunodominance of high-affinity T cell clones declined during the chronic infection phase, likely due to cellular senescence. These data showed that under conditions of chronic antigen exposure, low-affinity TCRs preferentially expanded within the TCR repertoire, with implications for immunotherapeutic strategies.


Subject(s)
Cytomegalovirus Infections/immunology , Receptors, Antigen, T-Cell/immunology , T-Lymphocytes/immunology , Animals , Cellular Senescence/immunology , Cytomegalovirus/immunology , Female , Humans , Mice , Mice, Inbred C57BL
17.
Dev Cell ; 51(4): 488-502.e8, 2019 11 18.
Article in English | MEDLINE | ID: mdl-31743663

ABSTRACT

Lipid flow between cellular organelles occurs via membrane contact sites. Extended-synaptotagmins, known as tricalbins in yeast, mediate lipid transfer between the endoplasmic reticulum (ER) and plasma membrane (PM). How these proteins regulate membrane architecture to transport lipids across the aqueous space between bilayers remains unknown. Using correlative microscopy, electron cryo-tomography, and high-throughput genetics, we address the interplay of architecture and function in budding yeast. We find that ER-PM contacts differ in protein composition and membrane morphology, not in intermembrane distance. In situ electron cryo-tomography reveals the molecular organization of tricalbin-mediated contacts, suggesting a structural framework for putative lipid transfer. Genetic analysis uncovers functional overlap with cellular lipid routes, such as maintenance of PM asymmetry. Further redundancies are suggested for individual tricalbin protein domains. We propose a modularity of molecular and structural functions of tricalbins and of their roles within the cellular network of lipid distribution pathways.


Subject(s)
Calcium-Binding Proteins/metabolism , Cell Membrane/metabolism , Endoplasmic Reticulum/metabolism , Saccharomyces cerevisiae Proteins/metabolism , Cell Membrane/physiology , Lipids , Membrane Proteins/metabolism , Mitochondria/physiology , Mitochondrial Membranes/metabolism , Saccharomyces cerevisiae/metabolism , Synaptotagmins/metabolism
18.
Sci Rep ; 9(1): 16893, 2019 11 15.
Article in English | MEDLINE | ID: mdl-31729440

ABSTRACT

Cytokines of the interleukin (IL)-1 family regulate immune and inflammatory responses. The recently discovered IL-36 family members are involved in psoriasis, rheumatoid arthritis, and pulmonary diseases. Here, we show that IL-36α interacts with heme thereby contributing to its regulation. Based on in-depth spectroscopic analyses, we describe two heme-binding sites in IL-36α that associate with heme in a pentacoordinated fashion. Solution NMR analysis reveals structural features of IL-36α and its complex with heme. Structural investigation of a truncated IL-36α supports the notion that the N-terminus is necessary for association with its cognate receptor. Consistent with our structural studies, IL-36-mediated signal transduction was negatively regulated by heme in synovial fibroblast-like synoviocytes from rheumatoid arthritis patients. Taken together, our results provide a structural framework for heme-binding proteins and add IL-1 cytokines to the group of potentially heme-regulated proteins.


Subject(s)
Heme/metabolism , Interleukin-1/metabolism , Arthritis, Rheumatoid/metabolism , Arthritis, Rheumatoid/pathology , Cells, Cultured , Cytokines/agonists , Cytokines/chemistry , Cytokines/metabolism , Fibroblasts/metabolism , Fibroblasts/pathology , Humans , Inflammation Mediators/agonists , Inflammation Mediators/chemistry , Inflammation Mediators/metabolism , Interleukin-1/agonists , Interleukin-1/chemistry , Models, Molecular , Molecular Dynamics Simulation , Protein Binding , Protein Conformation , Psoriasis/metabolism , Psoriasis/pathology , Structure-Activity Relationship , Synovial Membrane/metabolism , Synovial Membrane/pathology
19.
Chemistry ; 25(36): 8453-8458, 2019 Jun 26.
Article in English | MEDLINE | ID: mdl-30980425

ABSTRACT

Phototherapeutic applications of carbon monoxide (CO)-releasing molecules are limited because they require harmful UV and blue light for activation. We describe two-photon excitation with NIR light (800 nm)-induced CO-release from two MnI tricarbonyl complexes bearing 1,8-naphthalimide units (1, 2). Complex 2 behaves as a logic OR gate in solution, nonwovens, and in HeLa cells. CO release, indicated by fluorescence enhancement, was detected in solution, nonwoven, and HeLa cells by single- (405 nm) and two-photon (800 nm) excitation. The photophysical properties of 1 and 2 have been measured and supported by DFT and TDDFT quantum chemical calculations. Both photoCORMs are stable in the dark in solution and noncytotoxic, leading to promising applications as phototherapeutics with NIR light.

20.
Elife ; 82019 02 04.
Article in English | MEDLINE | ID: mdl-30714902

ABSTRACT

During apoptosis, Bcl-2 proteins such as Bax and Bak mediate the release of pro-apoptotic proteins from the mitochondria by clustering on the outer mitochondrial membrane and thereby permeabilizing it. However, it remains unclear how outer membrane openings form. Here, we combined different correlative microscopy and electron cryo-tomography approaches to visualize the effects of Bax activity on mitochondria in human cells. Our data show that Bax clusters localize near outer membrane ruptures of highly variable size. Bax clusters contain structural elements suggesting a higher order organization of their components. Furthermore, unfolding of inner membrane cristae is coupled to changes in the supramolecular assembly of ATP synthases, particularly pronounced at membrane segments exposed to the cytosol by ruptures. Based on our results, we propose a comprehensive model in which molecular reorganizations of the inner membrane and sequestration of outer membrane components into Bax clusters interplay in the formation of outer membrane ruptures. Editorial note: This article has been through an editorial process in which the authors decide how to respond to the issues raised during peer review. The Reviewing Editor's assessment is that all the issues have been addressed (see decision letter).


Subject(s)
Mitochondria/ultrastructure , Mitochondrial Membranes/ultrastructure , Mitochondrial Proton-Translocating ATPases/genetics , bcl-2-Associated X Protein/ultrastructure , Apoptosis/genetics , Cryoelectron Microscopy , Cytosol/chemistry , Cytosol/metabolism , HeLa Cells , Humans , Mitochondria/genetics , Mitochondrial Membranes/chemistry , Mitochondrial Proton-Translocating ATPases/chemistry , Protein Multimerization/genetics , Protein Transport/genetics , Proto-Oncogene Proteins c-bcl-2/chemistry , Proto-Oncogene Proteins c-bcl-2/genetics , bcl-2-Associated X Protein/chemistry , bcl-2-Associated X Protein/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...